### PORT OF PORT TOWNSEND



#### Point Hudson Marina Entrance Breakwater Feasibility Assessment





### **Outline**

- Breakwater History
  - Facility
  - Materials
- Breakwater Condition
- Analysis
- Protecting the Marina Options



## **Breakwater History**





# Breakwater History - Facility

- Original 1934 Construction by Military
  - Creosote Treated Timber Piling
  - Creosote Treated Timber Walers (2 to 3 Rows)
  - Armor Rock
  - Steel Cable Tiebacks
- Major Rehabilitation in 1969
  - Conversion from Pier/Breakwater to Breakwater
  - New Outer Piles
  - New Center Cables Tied to Existing Piles
- Retrofit in 1996 End 60' of S. Breakwater, Bend & End 12' of N. Breakwater
  - New ACZA Treated Timber Piling
  - Steel Cable Wrapped Around New Piling
  - Supplemental Armor Rock



# **Breakwater History - Facility**



# **Breakwater History - Facility**





# Breakwater History – Facility Improvements (1996)





### Breakwater History - Materials

- Original Creosote Treated Timber Piling
  - Typical Life Expectancy of 35 to 80 Years
  - Excellent Quality Lumber
- Original Creosote Treated Timber Walers
  - Typical Life Expectancy of 35 to 50 Years
- Galvanized Steel Cable Tiebacks
  - Galvanizing Has Typical Life Expectancy of 20 30 Years in Marine Environments, Then Rapid Deterioration Begins
- ACZA Treated Timber Piling
  - Typical Life Expectancy Much Less Than Creosote Treated Timber Piling, Typically 20 to 35 Years
- Armor Rock
  - Marine Basalt Low Quality. Typical Life Expectancy of 20 to 40 Years



#### **Outline**

- Breakwater History
- Breakwater Condition (Based on 2014 Site Visit)
  - System Components (Breakwater & Walkway)
  - Piles
  - Walers
  - Steel Cable Tiebacks
  - Armor Rock
  - S Breakwater End, Walkway
  - Conclusion
- Analysis
- Protecting the Marina Options



# **Breakwater Condition – System Components**





## Breakwater Condition – Breakwater Components



**Top Cable (1969)** 

Outer Pile (1969)

Upper Waler (1934)

Center Cable (1969)

Armor Rock (1934)

Inner Pile (1934)

Lower Waler (1934) (Not Visible) 11



Note: >75% Inner Piles (1935)Observed to be Highly Deteriorated, Not Contributing to Structural Stability. Assessment Focused on Outer Piles.

# **Breakwater Condition – Walkway Components**



Walkway

Stringer



Moderate to Severe
Abrasion Damage
20% to 30% Piles
Damaged and
Deteriorated

Moderate Abrasion
Damage – 10% to
20% Piles
Damaged and
Deteriorated

10% to 20% of Piles Sounded Somewhat Hollow, Exposed Side Worse than Sheltered Side 10% to 20% of Piles Sounded Somewhat Hollow, Exposed Side Worse than Sheltered Side

Severe Marine Borer Attack, 20% to 30% Piles Damaged and Deteriorated

Google earth



- Varying Levels of Deterioration Depending on Exposure, Damage
- Likely Shallow
   Embedment Highly
   Compacted Sand Layer
   0.8ft to 2ft Below Mudline
   (Landau Biological
   Assessment/Evaluation,
   September 2005)
- Piles Beyond Useful Service Life



**Piles in Poor Condition** 





- Marine Borer Attack
- Varying Levels of Deterioration
- Decay Where Creosote
   Treatment Penetrated by
   Bolts, Thru Rods



Inner Pile (1934):
Decay at Penetration

Outer Pile (1969): Marine Borer Attack



Abrasion
 Penetrated
 Creosote
 Protective
 Treatment,
 Subsequent
 Decay/Marine
 Borer Attack



Inner Pile (1934)
Abraded & Decayed

Outer Pile (1969) Abraded, Decaying (Hollow Sounding)



# Current Condition – Upper & Lower Walers

Walers Completely
Deteriorated –
Minimal Load
Carrying Capacity



Walers Completely
Deteriorated –
Minimal Load
Carrying Capacity



## **Current Condition – Upper & Lower Walers**

- Highly Deteriorated Minimal Capacity
- Minimal Contribution to Structure Stability – Decreased System Capacity
- Loss of Stone Confinement
- Walers Beyond Useful Service Life





Deteriorated Waler

Loss of Armor Rock



#### **Current Condition – Steel Cable Tiebacks**

10% Cables Severed,
Remainder
Deteriorated, Areas
Exposed to Wave Splash
Worst

10% to 20% of Cables Severed, Remainder Deteriorated, or Highly Deteriorated 5% to 10% of Cables Severed, Remainder Deteriorated

Google earth



#### Breakwater Condition – Steel Cable Tiebacks

- Pile Top Cables
   Wrapped Around Pile
   Tops to Provided
   Lateral Support
- Intermediate Cables Wrapped Between New and Old Piling – 90%+ Missing, Remainder Highly Deteriorated

**Intermediate Cables** 







#### **Breakwater Condition – Steel Cable Tiebacks**

- Level of Deterioration
   Difficult to Determine
   Visually
- Caked on Rust
- Cable End Examined,
   Estimated <10%</li>
   Capacity Remaining
- Cable Beyond Useful Service Life





### **Breakwater Condition – Steel Cable Tiebacks**

Supplementary
 Armor Piled on
 Cables –
 Potentially
 Causing
 Damage





### **Current Condition – Armor Rock**

10%-15% Voids in Face Stone in Contact w/Vertical Piles

6' Height of Armor Rock Lost at End



6' Height of Armor Rock Lost at End



#### **Current Condition – Armor Rock**

- Appears to be Matts Matts
   Sourced Marine Basalt –
   Low Quality Stone
- Highly Fractured
- >50% of Stone in Deteriorated to Highly Deteriorated State







#### **Breakwater Condition – Armor Rock**

- Armor Rock
   Spalls to 12" x
   12" x 8" Pieces,
   Which are Being
   Pulled From
   Between Piles by
   Wave Action
- Loss of Waler Results in Decreased Confinement of Armor Rock





#### **Breakwater Condition – Armor Rock**

- Substantial Armor Rock Loss at Venerable Breakwater Ends – Approx. 6' Height of Material Lost
- 10% to 15% Voids in Face Stone in Contact With Vert.
   Pile
- Armor Rock Beyond Useful Service Life





Barge Impact
 Shows
 Consequences of
 Lost Pile: Armor
 Rock Falling
 Through Hole
 Gap in Piles
 Created by Pile
 Failure



Impact-Damaged Pile

Loss of Armor Rock



## Breakwater Condition – S. Breakwater End, Walkway







**Stringer Nearly** Unseated, Pile Cap Rotated

# Breakwater Condition – S. Breakwater End, Walkway

Bent Shear Pin

Pile Cap

Rail Recently Modified for Lean



#### Breakwater Condition – S. Breakwater End

- Breakwater End Under Walkway Failing Maintenance Staff Needs to Closely Monitor Condition.
- Further Failure/Shifting May be Grounds For Closure of Approx. 60' End Portion.
- Port Maintenance to Monitor Pile Caps, Stringer Splices for any Change in Condition.



### Breakwater Condition – Assessment Summary

- Walers: Highly Deteriorated, No Longer Functional
- <u>Steel Cable Tiebacks</u>: Deteriorated to Highly Deteriorated, Some Already Failed, At End of Useful Life.
- Armor Rock: At Age of Increasing Deterioration Rate, Beyond Useful Service Life
- <u>Piles</u>: Near End of Useful Life, Abrasion Damage, Marine Borer Attack Damage, Decaying
- Overall Structural System: Substantially Less Stable than Original Construction, Higher Stresses
- S. Breakwater End: Walkway Stringer Nearly Unseated, Entire 60' End Portion Failed, Leaning Seaward
- Walkway: End 60' Near End of Useful Life, Needs Monitoring. Remainder in Good/Moderate Condition



## Breakwater Condition – Assessment Summary

- Maintenance/Repair of Existing Structure is not a Viable Alternative for Intermediate to Long Term Solution
- Major Rehabilitation/Replacement Will Be Required



### **Outline**

- Breakwater History
- Breakwater Condition (Based on 2014 Site Visit)
- Analysis
  - Overall Structural System
- Protecting the Marina Options



## Analysis – Overall Structural System



#### **Original Construction**

- Series of Cables
   Minimized Pile
   Stresses
- Minimal Reliance on Soil Capacity
- Minimal Reliance on Pile Capacity and Soil Capacity

#### **Current Condition**

- Only Top Cable Remaining
- Top Cable is
   Deteriorated –
   Reduced Capacity
- Stability Heavily
   Reliant on Pile
   Capacity and Soil
   Capacity



### Breakwater Condition – Analysis Summary

- System Capacity Significantly Reduced due to Deterioration. System Degradation Leading to Increased Pile Loading
- Outer Pile Load Demand Increased Significantly due to
  - Failed Walers (2 Rows)
  - Failed Thru-Rods (2 Rows)
- Outer Piles are Deteriorated Relative to New Condition – Resulting in Reduced Capacity
- Conclusion: Replacement/Rehabilitation Recommended



### **Outline**

- Breakwater History
- Breakwater Condition (Based on 2014 Site Visit)
- Analysis
- Protecting the Marina
  - Breakwater Replacement Options



## Breakwater Structure Type Alternatives

- Alternatives for Marina Protection
  - Vertical Pile Barrier
  - Braced Vertical Pile Barrier
  - Closed Cell Wall
  - Rubblemound
  - Exterior Soldier Pile



### Considerations for Structure Type Selection

- Habitat Eelgrass, Forage Fish
- Wave Reflection at entrance
- Wave Protection of Boat Basin
- Nearshore Sediment Processes
- Entrance Channel Width Requirement
- Structure Height (bottom elevation)
- Public Access Requirement
- Regulatory Requirements
- Construction Cost
- Maintenance





**VERTICAL PILE (VP) BREAKWATER** 





**BRACED PILE (BP) BREAKWATER** 













**RUBBLE MOUND (RM) BREAKWATER** 



**EXTERIOR SOLDIER PILE** 





Footprint too large ~ Not Feasible for seaward breakwater leg

RUBBLE MOUND (RM) BREAKWATER

MUDLINE EL -20

### **Breakwater Alternatives Matrix**



### Pre-Feasibility Evaluation

- Evaluation Conducted Relative to the following:
  - Structural
  - Construction Cost
    - Material, Installation, Mobilization, etc...
  - Previous Similar Project Experience
    - Recent Puget Sound Areas Breakwater/Jetty Construction
  - Depths (Total Height of Structure)
    - Bottom Elevations
      - 0' MLLW, -5' MLLW. -10' MLLW, -20' MLLW

#### Purpose:

- Determine Range of Feasible Concepts and range of cost for project planning
- Evaluation of breakwater configuration not conducted in this phase; next phase coastal engineering analysis to evaluate new configuration







# Order of Magnitude Upper Bound Cost Estimate

| Vertical Pile Wall    | Mudline | \$/LF |           | <u>Includes</u>             |
|-----------------------|---------|-------|-----------|-----------------------------|
| Braced Pile Wall      | EL 0    | \$    | 6,500.00  | Demolition/Disposal         |
|                       | EL -5   | \$    | 6,700.00  | New Materials               |
|                       | EL -10  | \$    | 6,900.00  | Installation                |
|                       | EL -20  | \$    | 7,300.00  | Mob/Demob (6%)              |
| Exterior Soldier Pile | Mudline | \$/LF |           | Sales Tax (8.4%)            |
|                       | EL 0    | \$    | 8,800.00  | Contingency (15%)           |
|                       | EL -5   | \$    | 9,400.00  |                             |
|                       | EL -10  | \$    | 10,000.00 |                             |
|                       | EL -20  | \$    | 11,100.00 | Excludes                    |
| Rubble Mound          | Mudline | \$/LF |           | Engineering Fees            |
|                       | EL 0    | \$    | 4,800.00  | Permitting Assistance       |
|                       | EL -5   | \$    | 6,800.00  | Construction Administration |
|                       | EL -10  | \$    | 9,200.00  | Walkway Construction        |
|                       | EL -20  | \$    | 16,000.00 | South Bulkhead              |
| Closed Cell           | Mudline | \$/LF |           |                             |
|                       | EL 0    | \$    | 6,500.00  |                             |
|                       | EL -5   | \$    | 7,400.00  |                             |
|                       | EL -10  | \$    | 8,300.00  |                             |
|                       | EL -20  | \$    | 10,000.00 |                             |

# Order of Magnitude Cost Estimate

|               | Segment                        | Length<br>[ft] | Potential<br>System    | Mudline<br>[EL, MLLW] | Low Cost<br>\$k/ft | High<br>Cost<br>\$k/ft | Low Cost     | High Cost    |
|---------------|--------------------------------|----------------|------------------------|-----------------------|--------------------|------------------------|--------------|--------------|
| N. Breakwater |                                |                |                        |                       |                    |                        |              |              |
|               | Shore Leg                      | 184            | VP, BP, CC,<br>RM      | -1                    | 4.8                | 6.5                    | \$ 880,000   | \$ 1,200,000 |
|               | Seaward<br>Leg                 | 100            | VP, BP, CC,<br>ESP     | -7                    | 6.9                | 10                     | \$ 690,000   | \$ 1,000,000 |
| S. Breakwater |                                |                |                        |                       |                    |                        |              |              |
|               | Shore Leg                      | 129            | VP, BP, CC,<br>RM, ESP | 3.5                   | 4.8                | 8.8                    | \$ 620,000   | \$ 1,140,000 |
|               | Seaward<br>Leg                 | 129            | BP, CC                 | -13                   | 6.9                | 8.3                    | \$ 890,000   | \$ 1,070,000 |
|               |                                |                |                        |                       |                    |                        |              |              |
|               | VP - Vertical Pile<br>Wall     |                |                        |                       |                    | Total                  | \$ 3,080,000 | \$ 4,410,000 |
|               | BP – Braced Pile<br>Wall       |                |                        |                       |                    |                        |              |              |
|               | CC- Closed Cell                |                |                        |                       |                    |                        |              |              |
|               | RM - Rubble<br>Mound           |                |                        |                       |                    |                        |              |              |
|               | ESP – Exterior<br>Soldier Pile |                |                        |                       |                    |                        |              |              |

### **Cost Evaluation Summary**

- Estimated Construction Cost Breakwater
  - \$3.25 Million to \$4.75 million
- Engineering, Data Collection, Permitting
  - Typically 15%
- Walkway?
  - To be determined



#### **Next Steps**

- Data Collection
  - Survey (Upland & Hydrographic)
  - Geotechnical borings
- Final Alternatives Evaluation
  - Coastal Engineering Analysis
    - Refine Entrance Channel & Breakwater Configuration
      - Reduce Construction Costs & Increase Entrance Safety & Maneuverability for Larger Vessels
  - Structural Engineering Analysis Refine Design Concepts
    - Refine structure type, size, alignment
- Preliminary Engineering
  - Analysis, Design & Cost Estimates
- Permit Application Documents



#### **Other Considerations**

- Grant Funding
  - WA DNR Creosote Treated Timber Pile Removal Program
  - RCO Overwater Public Access Walkway
  - RCO Breakwater for Marina Protection



#### PORT OF PORT TOWNSEND



#### Point Hudson Marina Entrance Breakwater Feasibility Assessment



