
TETRA TECH

Pyrolysis System Feasibility Study

For the Port of Port Townsend

complex world

Introduction

Project Team & Partners Project Background

complex world CLEAR SOLUTIONS[™]

Project Team & Partners

This study was conducted under a Recycling Development Center grant received by the Port from the Washington State Department of Ecology. Tetra Tech, Inc. has completed this study on behalf of the Port of Port Townsend.

This study was completed by the following engineers and technical specialists from Tetra Tech:

Chris Doherty; Keith Henn; Phil Lusk; Chris Noah, P.E.; Anne O'Bradovich; Kimberly Porsche, P.E.; and Al Randall

Tetra Tech would like to provide thanks to:

- Eron Berg Executive Director of the Port of Port Townsend
- **Eric Toews** Deputy Director of the Port of Port Townsend

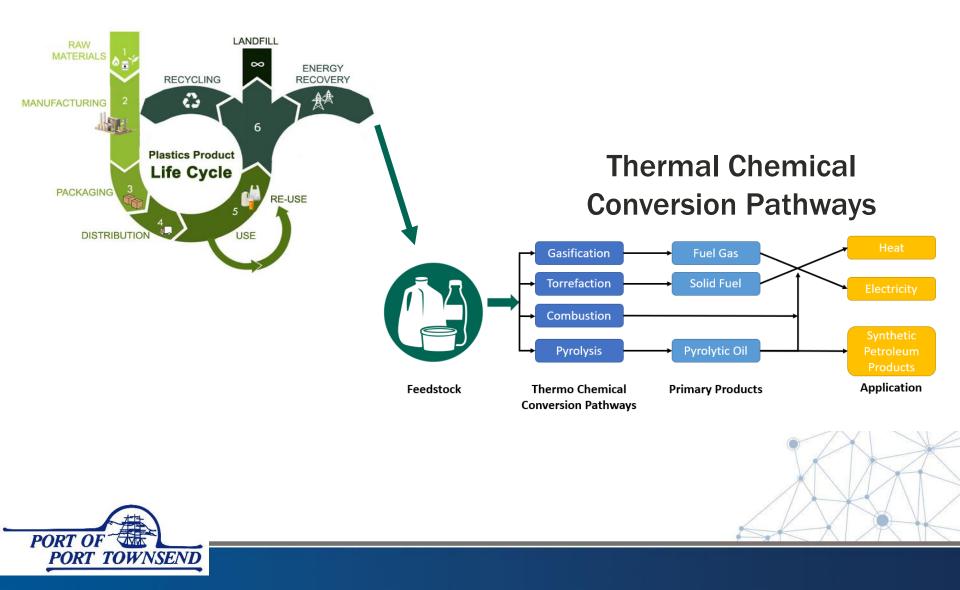
Pete Langley – Port Foundry

Al Cairns – Solid Waste Manger of Jefferson County Department of Public Works

Background

Feasibility Study Goal:

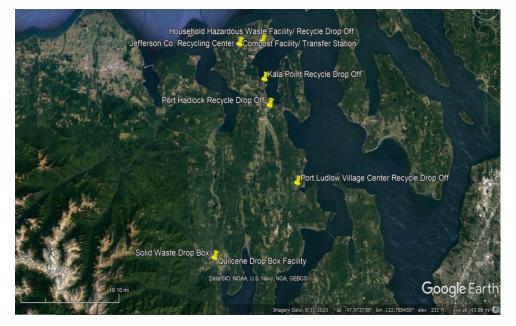
Assess if the conversion of waste plastics via pyrolysis is an effective alternative to the current waste disposal practices. The current practice includes collecting recyclables including plastics in Port Townsend and trucking them to Material Recovery Facility (MRF) in Tacoma, Washington.


Objectives:

- Identify, analyze, and evaluate available and potential future feedstocks
- Evaluate appropriate pyrolysis technologies and provide recommended option
- Identify offtake market applicability and options for pyrolysis outputs
- Develop an economic assessment for the recommended option
- Develop a preliminary permitting matrix

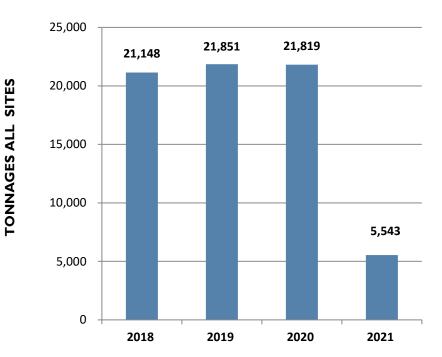
Background

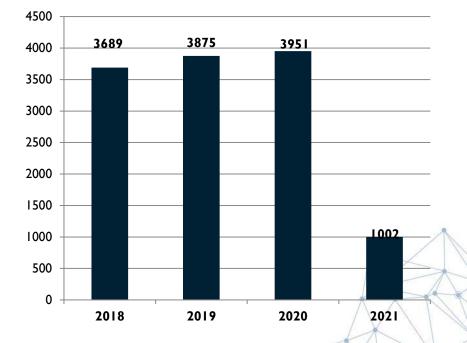
Feedstock Assessment


Existing Feedstock and Recycling Practices Feedstock Projections Pyrolysis Scenario Feedstock Assumptions

complex world

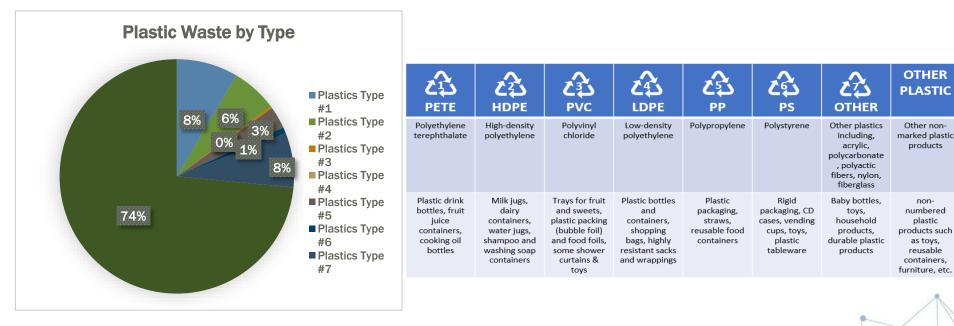
Existing Feedstock & Recycling Practices



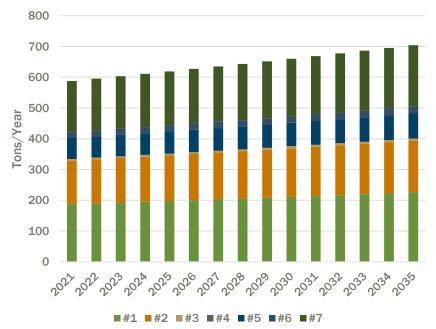


Existing Feedstock & Recycling Practices

SOLID WASTE TONNAGES BY YEAR



Jefferson County Plastic Waste Characterization



Potential Available Feedstock Projections

Projection of Generated Plastic Waste by Type, No Change in Single Use Plastic Habits Jefferson County, WA

Projection of Generated Plastic Waste by Type, Steady Decline in Single Use Plastic Habits Jefferson County, WA

Pretreatment System

Overview Vendors & Sizing

complex world _____CLEAR SOLUTIONS[™]

Pretreatment Overview

The goal of pretreatment is to concentrate the valuable feedstock that can be converted and separate it from inert material or other contaminants that cannot be converted.

We reviewed:

- Non-Source Separated (not selected)
- Source Separated (selected)

Source Separated Pretreatment Process Train

Pretreatment Overview

Pyrolysis System Technology

Overview Vendor Screening Most Probable Technology Block Flow Diagram Products

complex world| CLEAR SOLUTIONS™

Pyrolysis Overview

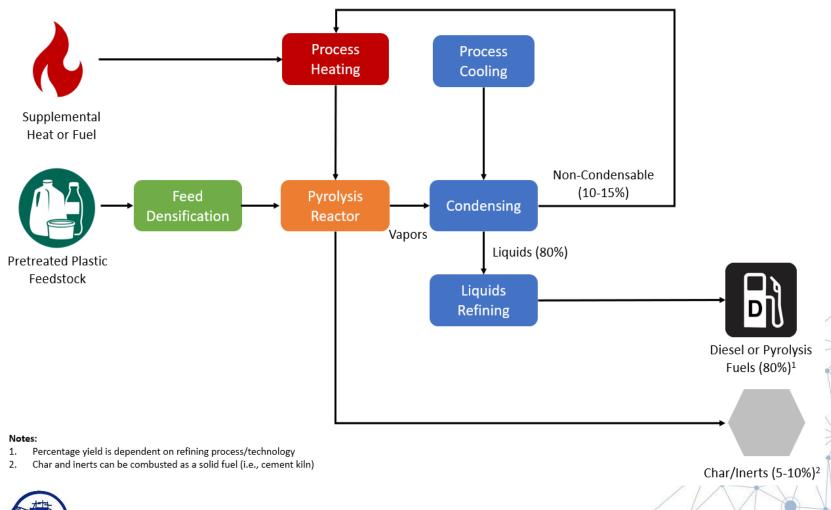
Pyrolysis is defined as the thermal breakdown of higher chain organic molecules (cracking) into smaller organic components. This thermal cracking is done in the absence of oxygen, sometimes with the addition of a catalyst.

The resulting products from the pyrolysis process are:

- <u>Char</u>: Consists of high carbon content solids. Also, any inorganics that might be contained in the waste stream and catalysts that were added and carried through the process.
- <u>Non-condensable Gas</u>: Made up of hydrogen, methane, carbon monoxide and other non-condensable gases. Can be burned similar to natural gas.
- <u>Condensable Liquids</u>: Sometimes referred to as Pyrolysis Oils. Made up of dozens of organic chemicals. Can be exported as-is or separated via distillation or other processing methods.

Pyrolysis Vendor Screening

Vendor	Location	Web Page	Response	Evaluated
Agilyx	Tigard, OR	https://www.agilyx.com/	Yes	Yes
Alterra	Akron, OH	https://alterraenergy.com/	Yes	Yes
Braven Environmental	Yonkers, NY	https://bravenenvironmental.com/	No	No
Encina	The Woodlands, TX	https://www.encina.com/	No	No
Enerkem	Edmonton, AB	https://enerkem.com/	Yes	Declined
Nexus Fuels	Atlanta, GA	https://www.nexusfuels.com/	Yes	Yes
PDO Technologies	Brooks, OR	https://www.pdotech.com/	Yes	Yes
Recycling Technologies	Swindon, United Kingdom	https://recyclingtechnologies.co.uk/	Yes	Declined
ThermoChem Recovery International	Baltimore, MD	https://tri-inc.net/pyrolysis/	No	No
Weiss-Linka	Denmark	https://www.weiss2energy.eu/	No	No


PDO Technologies

TECHNOLOGY INFORMATION	1-UNIT - STATIONARY	1 UNIT - MOBILE
Number of batches per Day	4 batches	3 batches
Feedstock Types	Homogenous or Heterogeneous feedstocks Best yield: #2, #4, #5, #6, some #7 Limited/no yield: #1, #3	Homogenous or Heterogeneous feedstocks Best yield: #2, #4, #5, #6, some #7 Limited/no yield: #1, #3
Feedstock preparation requirement	Separation from non target plastics <10% contaminants (dirt, metal, wood). Feedstock Densification to ≥ 20 lbs./ft3	Separation from non target plastics <10% contaminants (dirt, metal, wood). Feedstock Densification to ≥ 20 lbs./ft3
Feedstock loading	Continuous batch cartridge processing w/ganged, asynchronous processors	Continuous batch cartridge processing
Single batch size	1,250lbs.	500lbs.
Batch cycle time	5 hours, 30 minutes	3 hours, 15 minutes
Electricity consumption per batch	About 200-250 kwh	About 80-100 kwh
Burner fuel consumption per batch	About 4.1 MMBTU	About 1.7 MMBTU
% yield of plastic-to-fuel	ca. 80%	ca. 80%
Naphtha output per batch	About 50 gallons	About 20 gallons
Diesel output per batch	About 100 gallons	About 40 gallons
Char output per batch	85lbs. (energy content 8,000 BTUs/lb.)	35lbs. (energy content 8,000 BTUs/lb.)
Process emissions	Deminimus	Deminimus

Block Flow Diagram

Products

Pyrolysis Oil

- a. Can be transported to a refinery as-is (sometimes called "Syn-Crude") and used as a supplement for crude oil. Must be stored and transported at higher temperatures for flowability.
- b. Can be distilled on-site and separated into various cuts that may include the following:
 - a. Waxes and heavy hydrocarbons
 - b. Diesel and gasoline fuel blend stocks
 - c. Naptha products

Non-Condensable Gases

- a. Can be combusted on site to provide heat to the pyrolysis process
- b. Can be combusted on site to provide electricity to the pyrolysis process or for export

Char

- a. Can be refined and marketed as a Carbon Black substitute or other manufacturing constituent
- b. Can be marketed and used as a fuel supplement
- c. Can be disposed of as a solid waste product

Economic Assessment

200 Ton/Year 500 Ton/Year

complex world CLEAR SOLUTIONS[™]

200 Tons/Year Feedstock Scenario

PROJECT FINANCIAL SCENARIO							
200 Tons/Year Process Capacity							
Туре	Item	Description	Cost				
CAPEX	General	Contract Conditions & General Requirements, Mob/Demob, Site Preparation	\$120,000				
CAPEX	Pretreatment Infeed/Outfeed Conveyors	Vecoplan (1) each infeed and outfeed belt conveyors	\$70,000				
CAPEX	Pretreatment Shredder	Vecoplan 60-horsepower model VAZ1100XL shredder	\$119,000				
CAPEX	PDO Technologies Mobile Unit	PDO Technologies (1) Mobil Unit including;					
		Thermal Processing & Condensing Unit, 2 cartridges, cleaning machine, associated infrastructure,					
		platforms, lifts (as quoted by PDO)	\$1,300,000				
CAPEX	Building	Pre-Engineered Building (4,000 SF) including plumbing, HVAC, fixtures and furnishes	\$300,000				
CAPEX		Subtotal Direct Capital Costs	\$1,909,000				
CAPEX	Permitting & Engineering Fees (15%)		\$190,900				
CAPEX		Contingency (20%)	\$381,800				
CAPEX		Total Capital Costs	\$2,481,700				
OPEX	Pretreatment System	Annual Operating Cost (power usage, maintenance, consumables, manual sorting labor)					
OPEX	PDO Technologies Stationary Unit	Fechnologies Stationary Unit Annual Operating Cost (as quoted by PDO Technologies)					
OPEX		Total Operational Costs	\$222,596				
REVENUE	Pyrolysis Oil	55,500 gallons produced per year (200 tons/year plastics processed); fuel price of \$2.50/Gallon					
REVENUE	Cost Avoidance Tipping Fees at Roosevelt Regional Landfill avoided for (200 tons/year)		\$14,330				

500 Tons/Year Feedstock Scenario

PROJECT FINANCIAL SCENARIO								
500 Tons/Year Process Capacity								
Туре	Item	Description	Cost					
CAPEX	General	Contract Conditions & General Requirements, Mob/Demob, Site Preparation	\$150,000					
CAPEX	Pretreatment Infeed/Outfeed Conveyors	Vecoplan (1) each infeed and outfeed belt conveyors	\$70,000					
CAPEX	Pretreatment Shredder	Vecoplan 60-horsepower model VAZ1100XL shredder	\$119,000					
CAPEX	PDO Technologies Stationary Unit	PDO Technologies (1) Stationary Unit including;						
		Thermal Processing & Condensing Unit, 2 cartridges, cleaning machine, associated infrastructure,						
		platforms, lifts (as quoted by PDO)	\$975,000					
CAPEX	Building	Pre-Engineered Building (5,000 SF) including plumbing, HVAC, fixtures and furnishes	\$375,000					
CAPEX		Subtotal Direct Capital Costs	\$1,689,000					
CAPEX		Permitting & Engineering Fees (15%)	\$168,900					
CAPEX		Contingency (20%)	\$337,800					
CAPEX		Total Capital Costs	\$2,195,700					
OPEX	Pretreatment System Annual Operating Cost (power usage, maintenance, consumables, manual sorting labor)		\$71,600					
OPEX	PDO Technologies Stationary Unit	Annual Operating Cost (assume 75% quoted by PDO Technologies due to less processing)	\$207,675					
OPEX		Total Operational Costs	\$279,275					
REVENUE	Pyrolysis Oil	111,420 gallons produced per year (500 tons/year plastics processed); fuel price of \$2.50/Gallon	\$278,550					
REVENUE	Cost Avoidance	Tipping Fees at Roosevelt Regional Landfill avoided for (500 tons/year)	\$35,825					

Conclusions & Recommendations

complex world

Conclusions

Most Probable Technology: PDO Technologies

Their technology is feedstock flexible, able to shift products, and allows for greater operational flexibility due to the batch operation of the pyrolysis reactor.

System Sizing:

- Maximum Size 500 Tons/Year PDO Technologies Single Stationary Unit
- Minimum Size 200 Tons/Year PDO Technologies Mobile Unit

System Economics:

- 500 Tons/Year PDO Technologies Single Stationary Unit
 - Total project capital and operational costs is approximately \$2.5M and \$223K/year
 - Estimated revenue is \$138K/year from sale of 55,500 gallons of fuel at \$2.50/gallon
 - A minimum tip fee of \$0.70/lb is required to break even
- 200 Tons/Year PDO Technologies Mobile Unit
 - Total project capital and operational costs is approximately \$2.2M and \$280K/year
 - Estimated revenue is \$278K/year from sale of 111,420 gallons of fuel at \$2.50/gallon
 - A minimum tip fee of \$0.21/lb is required to break even

Limitations on Feedstock Sourcing

- Curbside services within the City of Port Townsend is currently a three-bin system which is contracted. It is unlikely that the provider would provide a separate bin for plastics.
- Curbside services for unincorporated Jefferson County are by subscription with a private sector hauler. This hauler is unlikely to adjust service to provide a separate bin for plastics.
- Drop box services have high contamination rates (up to 30%) mostly stemming from plastics.
- Public Works is not presently interested in financing or siting on County property a MRF to separate plastics from MSW
- As state and federal legislative action is trending towards reducing the production and consumption of single use plastics, Jefferson County has been considering discontinuation of plastic collection as part of its services

Recommendations

- Contact PDO Technologies for a more detailed discussion/presentation of their process considering the now known parameters of the Port of Port Townsend application. The discussion should include possible financing options and potential off-take scenarios.
- Confirm the feasibility of implementing a plastics-only source separation program (inclusion of another collection bin)
- Conduct a waste composition study to better quantify the type and composition of plastic feedstock available for a pyrolysis project
- Investigate the feasibility of combining the Port's waste plastics with the waste plastic from the rest of Jefferson County to support a larger scale pyrolysis project.
- Perform a local/regional market assessment to quantify the market potential and pricing for pyrolysis products including the char as a manufacturing additive or solid fuel replacement, the syn-crude as a diesel fuel blendstock, and the naptha and heavy hydrocarbons as petrochemical additives.

