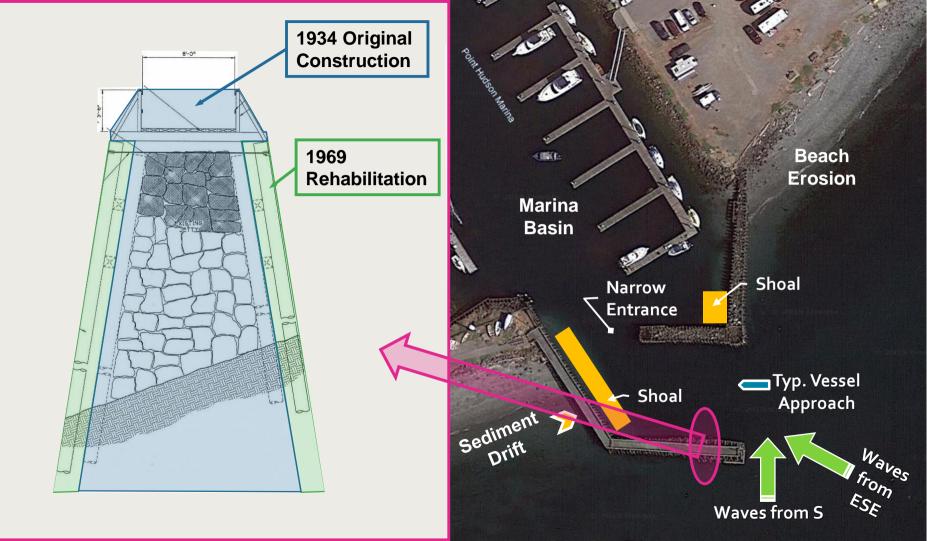
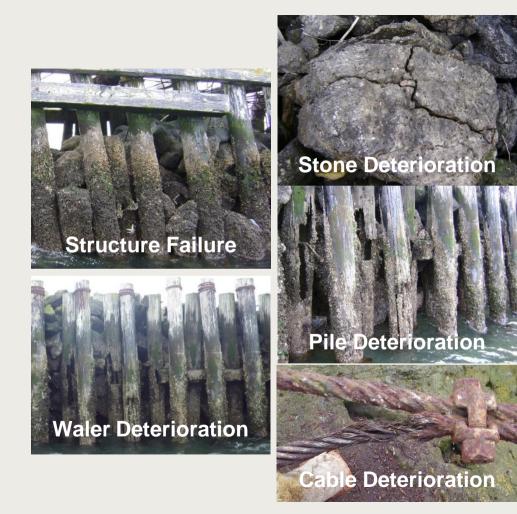


Point Hudson

Breakwater Improvement Project


Selected Alternative Feb 12th, 2020

Introduction & Assessment



Introduction

Existing Condition

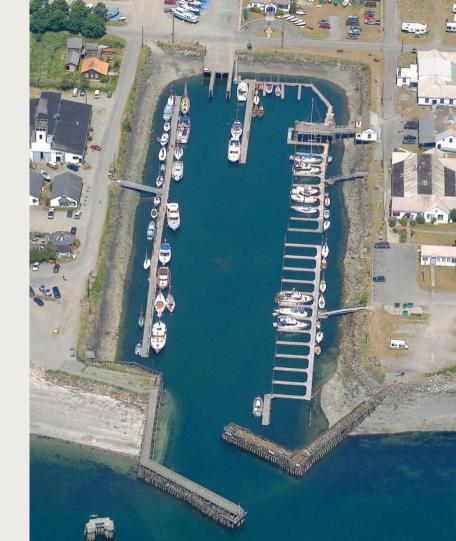
Timber piles, walers, cable tiebacks, and armor rock are at or beyond useful life. Stability of the overall structural system is compromised.

- The most advanced structural deterioration was observed at the end of the south breakwater.
- Voids in the riprap reduce the system's wave protection capability.

Μ

MOTT

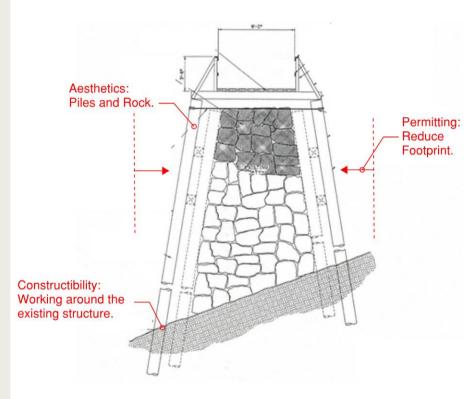
Design Objectives & Alternatives



Design Objectives

Overview

The guiding objectives are to provide a breakwater rehabilitation/replacement design that:


- Provides wave protection for the Point Hudson Marina for a minimum design life of 30 years.
- Responds to community concerns to maintain the aesthetic of the existing breakwater.
- Can be permitted, constructed and maintained.

Design Objectives

Considerations

- Engineering. Protect the existing marina and the Port operations against wind waves and vessel waves for at least the next 30 years. Considers navigation channel impacts.
- Aesthetics. Similar in appearance to the existing breakwater (rocks and piles) using modern materials.
- **Permitting.** Remove creosote and reduce footprint of the breakwater to minimize offsite mitigation requirements.
- **Constructability.** Minimize risks to the Port from potential cost overruns, delays, errors, and obstacles during construction.
- **Cost.** Cost efficient design that minimizes capital and maintenance costs.

Design Alternatives

Evaluation

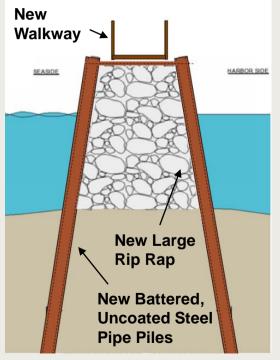
• Several Alternatives were considered and evaluated using the design objectives and then presented to the stakeholders.

Category	Alternative 1	Alternative 2	Alternative 3
Description	 Existing structure remains and is encapsulated. 	 Partial reconstruction and encapsulation. 	 The entire leg to be reconstructed in a smaller footprint.
Engineering and Performance	 Challenging to design and construct around the existing structure. Reduced navigation. 	 Most complex and challenging. Additional maintenance. Partially reduced navigation 	 Built from ground up with most control of end product. Improved navigation
Constructability	 Difficult to install new piles and rock around existing structure, risks of slow downs and issues. 	 Very challenging and risky to demolish only part of the structure. 	 Lowest risk but still challenging.
Permitting	 Most challenging, requiring mitigation. 	 Would likely require some mitigating. 	 Seeks to be self mitigating.

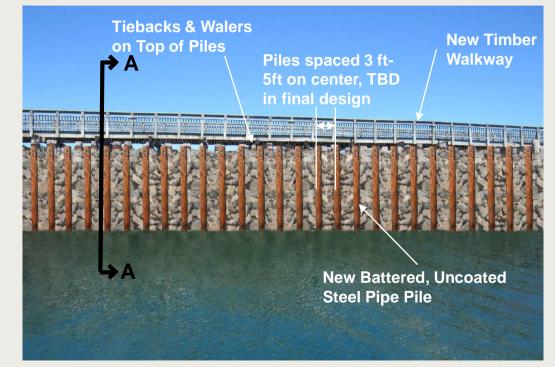
 After review of the different alternatives, stakeholders selected <u>Alternative 3</u> as their preferred alternative with some additional input.

Selected Breakwater Design

Breakwater Design


Stakeholder Input

In addition to selecting Alternative 3 as the preferred design, the stakeholders presented the following suggestions and guidance:


Category	Alternative 3
Pile	 Piles should be closely spaced similar to existing Piles should be uncoated steel pipe piles with sacrificial corrosion thickness, no composite piles Piles should be battered to match existing aesthetics Piles should be supported with tie rod cross-ties and potential walers
Breakwater Core	Large high quality riprap (granite)No mesh for rock containment
Walkway	 Design and system should allow for installation of walkway on top of the south breakwater End of walkway waterside should incorporate a wider turnaround and look out area
Permitting	 North and south breakwaters should be designed and permitted together

Breakwater Design

Selected Cross-Section and Elevation

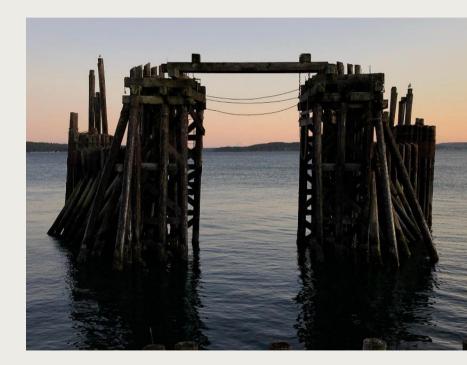
Section A - A

Elevation View

Phasing and Cost

Phasing

North and South Breakwaters


- Condition. North breakwater in slightly better condition than the south. Therefore, replacement of the south breakwater should occur before the north breakwater.
- **Construction Schedule.** South breakwater to be replaced winter of 2021 (dependent on permitting). North breakwater to be replaced a few years after completion of the south.
- **Demolition.** Demolish both structures and remove all existing creosote piles, timber, rock, and cables down to the mudline.
- **Footprint.** The new breakwater constructed within similar footprint as the existing.
- Walkway. Walkway to be added on top of south breakwater.

Mitigation and Cost

Considerations

- Environmental Impact Mitigation. Upon permit review, agencies may still require some mitigation. Mitigation options include using plumb piles vs. batter, reducing breakwater footprint further, and/or incorporating the Quincy St. Dock creosote pile removal.
- Replacement Cost. \$5.5M to \$6.5M (South), TBD (North). Replacement cost of north breakwater will be slightly less than the south, but depends on actual time of construction relative to corresponding inflation factors.

Next Steps

- Design Refinement.
 - Permitting Outreach
 - Coastal Assessment of new design
 - Refined breakwater width and footprint
 - Refined pile size and spacing
 - Refined coastal loading and protection
 - Batter vs Plumb piles
 - Architectural considerations
- Preliminary Design/ Permitting
- Final Design

Questions?

